Accueil > Actualités scientifiques
Le CNRS liens sites CNRS espaceur
espaceur
espaceur
espaceur espaceur espaceur
espaceur espaceur espaceur
espaceur

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

espaceur

Des capteurs de lumière moins chers, moins toxiques et recyclables pour la production d'hydrogène

Mimer la photosynthèse des plantes pour convertir, grâce à la lumière, des molécules stables et abondantes comme l’eau et le CO2 en carburant hautement énergétique (l’hydrogène) ou en produits chimiques d’intérêt pour l’industrie, est aujourd’hui un défi majeur de la recherche. La réalisation d’une photosynthèse artificielle en solution reste cependant limitée par l’utilisation, pour capturer la lumière, de composés à base de métaux coûteux et toxiques. Des chercheurs grenoblois du Département de chimie moléculaire (DCM : CNRS/UGA) et du laboratoire Systèmes Moléculaires et nanoMatériaux pour l'Energie et la Santé (SyMMES : CNRS/CEA/UGA) proposent une alternative efficace avec des nanocristaux semi-conducteurs (ou « quantum dots »), à base de cuivre, d’indium et de soufre, des métaux moins onéreux et moins toxiques. Ces travaux sont publiés dans Energy & Environmental Science le 10 avril 2018.
 


© Damien Jouvenot - DCM

 

Dans les systèmes de photosynthèse artificielle, les chromophores, ou « photosensibilisateurs », absorbent l’énergie lumineuse et transfèrent les électrons au catalyseur, qui active la réaction chimique. Alors que de nombreux progrès ont été réalisés ces dernières années dans le développement de catalyseurs sans métaux nobles, les photosensibilisateurs reposent encore, pour la plupart, sur des composés moléculaires à base de métaux rares et coûteux, comme le ruthénium ou l’iridium, ou sur des matériaux semi-conducteurs inorganiques contenant du cadmium, un métal toxique.

Pour la première fois, des chercheurs du Département de chimie moléculaire (CNRS/Université Grenoble Alpes) et du SyMMES (CNRS/CEA/Université Grenoble Alpes)[1] ont démontré, en combinant leurs expertises en ingénierie des matériaux semi-conducteurs et en photocatalyse, qu’il est possible de produire très efficacement du dihydrogène en associant des nanocristaux semi-conducteurs (ou « quantum dots ») inorganiques constitués d’un cœur de sulfure de cuivre et d’indium, protégé d’une coquille de zinc et de soufre, à un catalyseur moléculaire à base de cobalt. Ce dispositif « hybride » combine les excellentes propriétés d’absorption de la lumière visible et la stabilité des semi-conducteurs inorganiques à l’efficacité des catalyseurs moléculaires. En présence d’un excès de vitamine C, qui fournit les électrons au système, il montre une activité catalytique remarquable dans l’eau, la meilleure obtenue à ce jour avec des « quantum dots » sans cadmium. Les performances de ce système sont bien supérieures à celles obtenues avec un photosensibilisateur à base de ruthénium, grâce à la très grande stabilité de ses matériaux inorganiques, qui peuvent être recyclés plusieurs fois sans perte notable d’activité.

Ces résultats mettent en évidence le grand potentiel de tels systèmes hybrides pour la production d’hydrogène issue de l’énergie solaire.

 

Références

Cadmium-Free CuInS2/ZnS Quantum Dots as Efficient and Robust Photosensitizers in combination with a Molecular Catalyst for Visible Light-Driven H2 Production in Water. M. Sandroni, R. Gueret, K. D. Wegner, P. Reiss, J. Fortage, D. Aldakov, and M.-N. Collomb. Energy&Environmental Science, le 10 avril 2018. DOI : 10.1039/c8ee00120k.
 

Contact

Marie-Noëlle Collomb, chercheuse CNRS au DCM : marie-noelle.collomb@univ-grenoble-alpes.fr


Notes

[1] Au travers d’un projet collaboratif financé par le Labex Arcane de Grenoble.

espaceur
icônes espaceur
espaceur espaceur espaceur espaceur
pointilles
Lettre Hebdo

CNRS Hebdo

pointilles
intranet délégation

    Intranet de la     délégation

pointilles
intranet

    Intranet du CNRS

pointilles

Le CNRS en région

pointilles

Rechercher

sur le site de la délégation

 
 

pointilles
espaceur
  connection espaceur
Le CNRS Le CNRS Annuaires Mots Clefs du CNRS Autres sites Accueil Accueil Imprimer Contact Crédits Copier URL Plan du site